Decolorization of an azo dye Orange G in microbial fuel cells using Fe(II)-EDTA catalyzed persulfate.
نویسندگان
چکیده
This study constructed a microbial fuel cell (MFC) using Fe(II)-EDTA catalyzed persulfate as the cathode solutions to decolorize Orange G (OG) and harvest electricity simultaneously. Chelated Fe(2+) could activate persulfate to generate sulfate free radicals (SO(4)(-)) which with high oxidation potential (E(0)=2.6 V) can degrade azo dyes. The influence of some important factors such as pH value of cathode solutions, dosages of K(2)S(2)O(8), Fe(2+) and EDTA were investigated in a two-chamber microbial fuel cell. Under an optimal condition, the maximum power density achieved 91.1 mW m(-2), the OG removal rate was 97.4% and the K(2)S(2)O(8) remaining rate was 47.3% after 12 h. The OG degradation by Fe(II)-EDTA catalyzed persulfate was found to follow the second-order kinetic model.
منابع مشابه
Comprehensive review and compilation of treatment for azo dyes using microbial fuel cells.
Microbial fuel cells (MFCs) represent an emerging technology that focuses on power generation and effluent treatment. This review compiles articles related to MFCs using azo dye as the substrate. The significance of the general components in MFCs and systems of MFCs treating azo dye is depicted in this review. In addition, degradation of azo dyes such as Congo red, methyl orange, active brillia...
متن کاملInfluence of aromatic substitution patterns on azo dye degradability by Streptomyces spp. and Phanerochaete chrysosporium.
Twenty-two azo dyes were used to study the influence of substituents on azo dye biodegradability and to explore the possibility of enhancing the biodegradabilities of azo dyes without affecting their properties as dyes by changing their chemical structures. Streptomyces spp. and Phanerochaete chrysosporium were used in the study. None of the actinomycetes (Streptomyces rochei A10, Streptomyces ...
متن کاملPhotocatalytic decolorization of methyl orange dye using nano-photocatalysts
Environmental contamination, which is growing around the world, is a serious problem can not to be neglected. Among all contaminations, water pollution is a major problem. Azo dyes are one of the largest groups of pollutants found in the drinking water, coming from, and the food and textile industries. TiO2/Fe3O4 and TiO2/Fe2O3 nanocomposites with various ratios were synthesized by an ultrasoni...
متن کاملBioremedial Application of Bacillus Megaterium PMS82 in Microbial Degradation of Acid Orange Dye
A potential bacterial strain PMS82, capable of degrading an azo dye Acid orange as a sole source of carbon was isolated from common effluent treatment plant of Ankleshwar, India. The 16S rDNA sequence and phenotypic characteristics indicated that an isolated organism as Bacillus megaterium PMS82. This strain exhibited complete decolorization of Acid orange (100 mg/L) within 16 h, while maximall...
متن کاملFeasibility study of simultaneous azo dye decolorization and bioelectricity generation by microbial fuel cell-coupled constructed wetland: substrate effects
Microbial fuel cells (MFCs) were embedded into constructed wetlands to form microbial fuel cell coupled constructed wetlands (CW-MFCs) and were used for simultaneous azo dye wastewater treatment and bioelectricity generation. For the first time, the effects of different substrate biomass on the performance of CW-MFCs were studied. Group A had the highest substrate biomass of 0.453 g VSS per L, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioresource technology
دوره 126 شماره
صفحات -
تاریخ انتشار 2012